Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The traditional mechanism models used in short-circuit current calculations have shortcomings in terms of accuracy and speed for distribution systems with inverter-interfaced distributed generators (IIDGs). Faced with this issue, this paper proposes a novel data-driven short-circuit current prediction method for active distribution systems. This method can be used to accurately predict the short-circuit current flowing through a specified measurement point when a fault occurs at any position in the distribution network. By analyzing the features related to the short-circuit current in active distribution networks, feature combination is introduced to reflect the short-circuit current. Specifically, the short-circuit current where IIDGs are not connected into the system is treated as the key feature. The accuracy and efficiency of the proposed method are verified using the IEEE 34-node test system. The requirement of the sample sizes for distribution systems of different scale is further analyzed by using the additional IEEE 13-node and 69-node test systems. The applicability of the proposed method in large-scale distribution network with high penetration of IIDGs is verified as well.

Details

Title
A Novel Machine Learning-Based Short-Circuit Current Prediction Method for Active Distribution Networks
Author
Zheng, Xiang; Wang, Huifang  VIAFID ORCID Logo  ; Jiang, Kuan; He, Benteng
First page
3793
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2317022534
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.