Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The existing techniques for detecting defects in photovoltaic (PV) components have some drawbacks, such as few samples, low detection accuracy, and poor real-time performance. This paper presents a cloud-edge collaborative technique for detecting the defects in PV components, based on transfer learning. The proposed cloud model is based on the YOLO v3-tiny algorithm. To increase the detection effect of small targets, we produced a third prediction layer by fusing the shallow feature information with the stitching layer in the second detection scale and introducing a residual module to achieve improvement of the YOLO v3-tiny algorithm. In order to further increase the ability of the network model to extract target features, the residual module was introduced in the YOLO v3-tiny backbone network to increase network depth and learning ability. Finally, through the model’s transfer learning and edge collaboration, the adaptability of the defect-detection algorithm to personalized applications and real-time defect detection was enhanced. The experimental results showed that the average accuracy and recall rates of the improved YOLO v3-tiny for detecting defects in PV components were 95.5% and 93.7%, respectively. The time-consumption of single panoramic image detection is 6.3 ms, whereas the consumption of the model’s memory is 64 MB. After cloud-edge learning migration, the training time for a local sample model was improved by 66%, and the accuracy reached 99.78%.

Details

Title
Novel Cloud-Edge Collaborative Detection Technique for Detecting Defects in PV Components, Based on Transfer Learning
Author
Wang, Hongxi 1 ; Li, Fei 1 ; Mo, Wenhao 2 ; Peng, Tao 1 ; Shen, Hongtao 1 ; Wu, Yidi 3 ; Zhang, Yushuai 1 ; Deng, Fangming 4 

 Marketing Service Center, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050035, China 
 China Electric Power Research Institute, Beijing 100192, China 
 State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050021, China 
 School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China 
First page
7924
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734627602
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.