Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper presents research on a method of obtaining magnesium hydroxide from magnesium sulphate salts and NaOH. In order to acquire the desired and controlled properties, the method of precipitating in aqueous solutions by introducing a NaOH solution into a solution of MgSO4 has been applied. To get as stable a product as possible with graining, the introduction of NaOH takes place at a constant flow rate. In order to identify the environmental impact of the developed process, a life cycle assessment (LCA) has been made. The use of the proposed method for the synthesis of Mg(OH)2 incorporating washing with 25% ammonia solution and acetone enabled a product with a high specific surface area. The Mg(OH)2 obtained was characterised by a higher specific surface area than commercially available magnesium hydroxides that are used as additives for flame retardants in polymeric materials. This allows the material to be used as an anti-pyrogen for a wider group of polymeric materials. For the LCA analysis, two scenarios were assumed, from which the basic one included recovery of ammonia and acetone. The environmental analysis carried out confirmed the validity of this assumption, as it was stated that the main part of the impact was connected with the supply chain for the process examined.

Details

Title
New Production Route of Magnesium Hydroxide and Related Environmental Impact
Author
Jarosinski, Andrzej 1 ; Radomski, Piotr 2 ; Lelek, Lukasz 1   VIAFID ORCID Logo  ; Kulczycka, Joanna 3   VIAFID ORCID Logo 

 Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7A Str., 31-261 Cracow, Poland; [email protected] 
 Institute of Chemistry and Inorganic Technology, Cracow University of Technology, 31-155 Cracow, Poland; [email protected] 
 Faculty of Management, AGH University of Science and Technology, 30-067 Cracow, Poland; [email protected] 
First page
8822
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548880756
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.