Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Continuous frames of point-cloud-based object detection is a new research direction. Currently, most research studies fuse multi-frame point clouds using concatenation-based methods. The method aligns different frames by using information on GPS, IMU, etc. However, this fusion method can only align static objects and not moving objects. In this paper, we proposed a non-local-based multi-scale feature fusion method, which can handle both moving and static objects without GPS- and IMU-based registrations. Considering that non-local methods are resource-consuming, we proposed a novel simplified non-local block based on the sparsity of the point cloud. By filtering out empty units, memory consumption decreased by 99.93%. In addition, triple attention is adopted to enhance the key information on the object and suppresses background noise, further benefiting non-local-based feature fusion methods. Finally, we verify the method based on PointPillars and CenterPoint. Experimental results show that the mAP of the proposed method improved by 3.9% and 4.1% in mAP compared with concatenation-based fusion modules, PointPillars-2 and CenterPoint-2, respectively. In addition, the proposed network outperforms powerful 3D-VID by 1.2% in mAP.

Details

Title
Muti-Frame Point Cloud Feature Fusion Based on Attention Mechanisms for 3D Object Detection
Author
Zhai, Zhenyu 1   VIAFID ORCID Logo  ; Wang, Qiantong 2   VIAFID ORCID Logo  ; Pan, Zongxu 1   VIAFID ORCID Logo  ; Gao, Zhentong 1   VIAFID ORCID Logo  ; Hu, Wenlong 1 

 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China 
 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China 
First page
7473
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724305586
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.