Full Text

Turn on search term navigation

© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Modern optical neuroimaging approaches are expanding the ability to elucidate complex brain function. Diverse imaging contrasts enable direct observation of neural activity with functional sensors along with the induced hemodynamic responses. To date, decoupling the complex interplay of neurovascular coupling and dynamical physiological states has remained challenging when employing single‐modality functional neuroimaging readings. A hybrid fluorescence optoacoustic tomography platform combined with a custom data processing pipeline based on statistical parametric mapping is devised, attaining the first noninvasive observation of simultaneous calcium and hemodynamic activation patterns using optical contrasts. Correlated changes in the oxy‐ and deoxygenated hemoglobin, total hemoglobin, oxygen saturation, and rapid GCaMP6f fluorescence signals are observed in response to peripheral sensory stimulation. While the concurrent epifluorescence serves to corroborate and complement the functional optoacoustic observations, the latter further aids in decoupling the rapid calcium responses from the slowly varying background in the fluorescence recordings mediated by hemodynamic changes. The hybrid imaging platform expands the capabilities of conventional neuroimaging methods to provide more comprehensive functional readings for studying neurovascular and neurometabolic coupling mechanisms and related diseases.

Details

Title
Multimodal Noninvasive Functional Neurophotonic Imaging of Murine Brain‐Wide Sensory Responses
Author
Chen, Zhenyue 1   VIAFID ORCID Logo  ; Zhou, Quanyu 1 ; Xosé Luís Deán‐Ben 1 ; Irmak Gezginer 1 ; Ni, Ruiqing 1 ; Reiss, Michael 1 ; Shoham, Shy 2 ; Razansky, Daniel 1   VIAFID ORCID Logo 

 Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland 
 Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, New York, USA 
Section
Research Article
Publication year
2022
Publication date
Aug 2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2705966286
Copyright
© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.