Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To achieve a high precision estimation of indoor robot motion, a tightly coupled RGB-D visual-inertial SLAM system is proposed herein based on multiple features. Most of the traditional visual SLAM methods only rely on points for feature matching and they often underperform in low textured scenes. Besides point features, line segments can also provide geometrical structure information of the environment. This paper utilized both points and lines in low-textured scenes to increase the robustness of RGB-D SLAM system. In addition, we implemented a fast initialization process based on the RGB-D camera to improve the real-time performance of the proposed system and designed a new backend nonlinear optimization framework. By minimizing the cost function formed by the pre-integrated IMU residuals and re-projection errors of points and lines in sliding windows, the state vector is optimized. The experiments evaluated on public datasets show that our system achieves higher accuracy and robustness on trajectories and in pose estimation compared with several state-of-the-art visual SLAM systems.

Details

Title
Multi-Feature Nonlinear Optimization Motion Estimation Based on RGB-D and Inertial Fusion
Author
Zhao, Xiongwei; Miao, Cunxiao; Zhang, He
First page
4666
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2436332239
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.