It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
NK cell adoptive therapy is a promising cancer therapeutic approach, but there are significant challenges that limiting its feasibility and clinical efficacy. One difficulty is the paucity of clinical grade manufacturing platforms to support the large scale expansion of highly active NK cells. We created an NK cell feeder cell line termed ‘NKF’ through overexpressing membrane bound IL-21 that is capable of inducing robust and sustained proliferation (>10,000-fold expansion at 5 weeks) of highly cytotoxic NK cells. The expanded NK cells exhibit increased cytotoxic function against a panel of blood cancer and solid tumor cells as compared to IL-2-activated non-expanded NK cells. The NKF-expanded NK cells also demonstrate efficacy in mouse models of human sarcoma and T cell leukemia. Mechanistic studies revealed that membrane-bound IL-21 leads to an activation of a STAT3/c-Myc pathway and increased NK cell metabolism with a shift towards aerobic glycolysis. The NKF feeder cell line is a promising new platform that enables the large scale proliferation of highly active NK cells in support of large scale third party NK cell clinical studies that have been recently intiatied. These results also provide mechanistic insights into how membrane-bound IL-21 regulates NK cell expansion.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
2 Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
3 Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
4 Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
5 Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA