Content area
Full Text
ÖZ
"Mantık - Matematik ilişkisi bağlamında geçerli kıyas kalıplarının Venn şeması ile gösterimi ve yorumlanması" adını taşıyan bu çalışmada kıyas kalıplarını matematiksel bir gösterim şekli ile daha sembolik hale getirmeye ve farklı bir bakış açısı sunmaya çalıştık. İlk olarak kısaca mantık matematik ilişkisini ele aldık. Ardından özetle kıyas üzerinde durduk. Daha sonra gösterim şeklinin sembolik olması sebebiyle ana hatlarıyla sembolik mantığın tarihçesi, yapısı, gelişimi ve Venn şemaları hakkında bilgi verdik. Son olarak önceki bölümde verilen örnekleri Venn şeması yöntemi ile göstermeye çalıştık. Sonuçta ise ulaşılan kanaatlere yer verdik.
ANAHTAR KELİMELER: Mantık, Matematik, Kıyas, Venn şeması, Gösterim.
ABSTRACT
In this work that is titled "Venn Scheme Presentation and Interpretation of Syllogism Patterns with Respect to Logic- Mathematics Relationship", we try to make the Patterns of syllogism more symbolic using mathematical representation techniques and thus provide a different perspective. The first section is named as "Logic- Mathematics Relationship" and here, how the interaction between logic and mathematic scienses has taken place in the historic process has been summarized. Then we stand on syllogism briefly. Followingly shares the same name with the thesis since the proposed representations will be taken into consideration here. Since mathematical representation is symbolic, we outline the history of symbolic logic, its structure and historical progress. Then, we compile the necessary information regarding Venn schemes. Finally, we show the examples given in the previous section using Venn scheme representation. In the conclusion we are revaluated the datas.
KEYWORDS: Logic, Mathematics, Syllogism, Venn, Presentation.
SUMMARY
Every discipline has its own subjects, principles and problems. Therefore it can be said that sciences has autonomy. However this should not mean that a science is completely unrelated to other sciences. There are connections and similarities between disciplines. Logic and Mathematics are such two disciplines that have common ground. Being both theoretical, logic and mathematics are in close relation considering the proof methods and their endpoints. Although these two disciplines have been considered separately until the modern age, this has changed since the 19th century. After this century, there have been studies on the assumption that mathematics and logic are interrelated.
For example, British logicians such as De Morgan (1806-1876), George Boole (1815-1864) and Stanley Jevons (1835-1882) tried to rebuild logic by exemplifying mathematics but failed. The reason...