Abstract

Discovering chemicals with desired attributes is a long and painstaking process. Curated datasets containing reliable quantum-mechanical properties for millions of molecules are becoming increasingly available. The development of novel machine learning tools to obtain chemical knowledge from these datasets has the potential to revolutionize the process of chemical discovery. Here, I comment on recent breakthroughs in this emerging field and discuss the challenges for the years to come.

Details

Title
Machine learning for chemical discovery
Author
Tkatchenko Alexandre 1   VIAFID ORCID Logo 

 University of Luxembourg, Department of Physics and Materials Science, Luxembourg, Luxembourg (GRID:grid.16008.3f) (ISNI:0000 0001 2295 9843) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2434620062
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.