Full Text

Turn on search term navigation

© 2018 Theodoly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Macroscopic properties of physical and biological processes like friction, wetting, and adhesion or cell migration are controlled by interfacial properties at the nanoscopic scale. In an attempt to bridge simultaneously investigations at different scales, we demonstrate here how optical microscopy in Wet-Surface Ellipsometric Enhanced Contrast (Wet-SEEC) mode offers imaging and measurement of thin films at solid/liquid interfaces in the range 1–500 nm with lateral optical resolution. A live, label-free and noninvasive methodology integrated with microfluidic devices allowed here characterization of polymers and proteins patterns together with corresponding phenotypes of living cells.

Details

Title
Live nanoscopic to mesoscopic topography reconstruction with an optical microscope for chemical and biological samples
Author
Theodoly, Olivier; Garcia-Seyda, Nicolas; Bedu, Fréderic; Luo, Xuan; Sylvain, Gabriele; Mignot, Tâm; Giermanska, Joanna; Chapel, Jean-Paul; ⨯ Mélinda Métivier; Marie-Pierre Valignat ⨯
First page
e0207881
Section
Research Article
Publication year
2018
Publication date
Dec 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2155129178
Copyright
© 2018 Theodoly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.