Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A significant growth in the future demand for water resources is expected. Hence researchers have focused on finding new technologies to develop water filtration systems by using experimental and simulation methods. These developments were mainly on membrane-based separation technology, and photocatalytic degradation of organic pollutants which play an important role in wastewater treatment by means of adsorption technology. In this work, we provide valuable critical review of the latest experimental and simulation methods on wastewater treatment by adsorption on nanomaterials for the removal of pollutants. First, we review the wastewater treatment processes that were carried out using membranes and nanoparticles. These processes are highlighted and discussed in detail according to the rate of pollutant expulsion, the adsorption capacity, and the effect of adsorption on nanoscale surfaces. Then we review the role of the adsorption process in the photocatalytic degradation of pollutants in wastewater. We summarise the comparison based on decomposition ratios and degradation efficiency of pollutants. Therefore, the present article gives an evidence-based review of the rapid development of experimental and theoretical studies on wastewater treatment by adsorption processes. Lastly, the future direction of adsorption methods on water filtration processes is indicated.

Details

Title
A Literature Review of Modelling and Experimental Studies of Water Treatment by Adsorption Processes on Nanomaterials
Author
Ibrahim, Qusai  VIAFID ORCID Logo  ; Creedon, Leo  VIAFID ORCID Logo  ; Salem Gharbia
First page
360
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652997105
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.