Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Building change detection (BuCD) can offer fundamental data for applications such as urban planning and identifying illegally-built new buildings. With the development of deep neural network-based approaches, BuCD using high-spatial-resolution remote sensing images (RSIs) has significantly advanced. These deep neural network-based methods, nevertheless, typically demand a considerable number of computational resources. Additionally, the accuracy of these algorithms can be improved. Hence, LightCDNet, a lightweight Siamese neural network for BuCD, is introduced in this paper. Specifically, LightCDNet comprises three components: a Siamese encoder, a multi-temporal feature fusion module (MultiTFFM), and a decoder. In the Siamese encoder, MobileNetV2 is chosen as the feature extractor to decrease computational costs. Afterward, the multi-temporal features from dual branches are independently concatenated based on the layer level. Subsequently, multiscale features computed from higher levels are up-sampled and fused with the lower-level ones. In the decoder, deconvolutional layers are adopted to gradually recover the changed buildings. The proposed network LightCDNet was assessed using two public datasets: namely, the LEVIR BuCD dataset (LEVIRCD) and the WHU BuCD dataset (WHUCD). The F1 scores on the LEVIRCD and WHUCD datasets of LightCDNet were 89.6% and 91.5%, respectively. The results of the comparative experiments demonstrate that LightCDNet outperforms several state-of-the-art methods in accuracy and efficiency.

Details

Title
A Lightweight Siamese Neural Network for Building Change Detection Using Remote Sensing Images
Author
Yang, Haiping 1 ; Chen, Yuanyuan 1 ; Wu, Wei 1   VIAFID ORCID Logo  ; Pu, Shiliang 2 ; Wu, Xiaoyang 2 ; Wan, Qiming 2 ; Dong, Wen 3 

 College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310024, China 
 Hangzhou Hikvision Digital Technology Co., Ltd., Hangzhou 310051, China 
 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China 
First page
928
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779686990
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.