Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With advances in precision agriculture, autonomous agricultural machines can reduce human labor, optimize workflow, and increase productivity. Accurate and reliable obstacle-detection and avoidance systems are essential for ensuring the safety of automated agricultural machines. Existing LiDAR-based obstacle detection methods for the farmland environment process the point clouds via manually designed features, which is time-consuming, labor-intensive, and weak in terms of generalization. In contrast, deep learning has a powerful ability to learn features autonomously. In this study, we attempted to apply deep learning in LiDAR-based 3D obstacle detection for the farmland environment. In terms of perception hardware, we established a data acquisition platform including LiDAR, a camera, and a GNSS/INS on the agricultural machine. In terms of perception method, considering the different agricultural conditions, we used our datasets to train an effective 3D obstacle detector, known as Focal Voxel R-CNN. We used focal sparse convolution to replace the original 3D sparse convolution because of its adaptable ability to extract effective features from sparse point cloud data. Specifically, a branch of submanifold sparse convolution was added to the upstream of the backbone convolution network; this adds weight to the foreground point and retains more valuable information. In comparison with Voxel R-CNN, the proposed Focal Voxel R-CNN significantly improves the detection performance for small objects, and the AP in the pedestrian class increased from 89.04% to 92.89%. The results show that our model obtains an mAP of 91.43%, which is 3.36% higher than the base model. The detection speed is 28.57 FPS, which is 4.18 FPS faster than the base model. The experiments show the effectiveness of our model, which can provide a more reliable obstacle detection model for autonomous agricultural machines.

Details

Title
Lidar-Based 3D Obstacle Detection Using Focal Voxel R-CNN for Farmland Environment
Author
Jia Qin 1 ; Sun, Ruizhi 2 ; Zhou, Kun 3   VIAFID ORCID Logo  ; Xu, Yuanyuan 1 ; Lin, Banghao 1 ; Yang, Lili 1 ; Chen, Zhibo 1 ; Long, Wen 1 ; Wu, Caicong 1 

 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Machinery Monitoring and Big Data Applications, Ministry of Agriculture and Rural Affairs, Beijing 100083, China 
 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; Scientific Research Base for Integrated Technologies of Precision Agriculture (Animal Husbandry), Ministry of Agriculture and Rural Affairs, Beijing 100083, China 
 Research & Advanced Engineering, AGCO A/S, DK-8930 Randers, Denmark 
First page
650
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791561152
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.