Full Text

Turn on search term navigation

Copyright © 2017 Lv Tao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Stock price prediction based on K-line patterns is the essence of candlestick technical analysis. However, there are some disputes on whether the K-line patterns have predictive power in academia. To help resolve the debate, this paper uses the data mining methods of pattern recognition, pattern clustering, and pattern knowledge mining to research the predictive power of K-line patterns. The similarity match model and nearest neighbor-clustering algorithm are proposed for solving the problem of similarity match and clustering of K-line series, respectively. The experiment includes testing the predictive power of the Three Inside Up pattern and Three Inside Down pattern with the testing dataset of the K-line series data of Shanghai 180 index component stocks over the latest 10 years. Experimental results show that (1) the predictive power of a pattern varies a great deal for different shapes and (2) each of the existing K-line patterns requires further classification based on the shape feature for improving the prediction performance.

Details

Title
K-Line Patterns' Predictive Power Analysis Using the Methods of Similarity Match and Clustering
Author
Lv Tao; Hao, Yongtao; Hao Yijie; Shen Chunfeng
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1906050394
Copyright
Copyright © 2017 Lv Tao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.