It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The evolution of Internet of Things (IoT) technology has led to an increased emphasis on edge computing for Cyber-Physical Systems (CPS), in which applications rely on processing data closer to the data sources, and sharing the results across heterogeneous clusters. This has simplified the data exchanges between IoT/CPS systems, the cloud, and the edge for managing low latency, minimal bandwidth, and fault-tolerant applications. Nonetheless, many of these applications administer data collection on the edge and offer data analytic and storage capabilities in the cloud. This raises the problem of separate software stacks between the edge and the cloud with no unified fault-tolerant management, hindering dynamic relocation of data processing. In such systems, the data must also be preserved from being corrupted or duplicated in the case of intermittent long-distance network connectivity issues, malicious harming of edge devices, or other hostile environments. Within this context, the contributions of this paper are threefold: (i) to propose a new Internet of Things Edge-Cloud Federation (IoTEF) architecture for multi-cluster IoT applications by adapting our earlier Cloud and Edge Fault-Tolerant IoT (CEFIoT) layered design. We address the fault tolerance issue by employing the Apache Kafka publish/subscribe platform as the unified data replication solution. We also deploy Kubernetes for fault-tolerant management, combined with the federated scheme, offering a single management interface and allowing automatic reconfiguration of the data processing pipeline, (ii) to formulate functional and non-functional requirements of our proposed solution by comparing several IoT architectures, and (iii) to implement a smart buildings use case of the ongoing Otaniemi3D project as proof-of-concept for assessing IoTEF capabilities. The experimental results conclude that the architecture minimizes latency, saves network bandwidth, and handles both hardware and network connectivity based failures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Aalto University, Department of Computer Science, Espoo, Finland (GRID:grid.5373.2) (ISNI:0000000108389418)
2 University of Luxembourg - Interdisciplinary Centre For Security, Reliability and Trust, Luxembourg City, Luxembourg (GRID:grid.16008.3f) (ISNI:0000 0001 2295 9843)
3 University of Helsinki, Department of Computer Science, Helsinki, Finland (GRID:grid.7737.4) (ISNI:0000 0004 0410 2071)
4 Aalto University, Department of Computer Science, Espoo, Finland (GRID:grid.5373.2) (ISNI:0000000108389418); Umeå University, Department of Computing Science, Umeå, Sweden (GRID:grid.12650.30) (ISNI:0000 0001 1034 3451)