Full Text

Turn on search term navigation

Copyright © 2017 Daniel Janczak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The paper describes the investigations of pH-sensitive materials for screen printed flexible pH sensors. The sensors were fully printed and consisted of three layers, conductive made of low temperature-curable silver paste, insulating made of UV-curable dielectric paste, and pH-sensitive made of developed graphene/ruthenium oxide pastes. Graphene and ruthenium oxide composites were prepared with different proportions of graphene nanoplatelets paste and submicron ruthenium dioxide. To perform functional measurements, particular testing sensors were fabricated on flexible polyester foil. Afterwards electrochemical potential measurements of fabricated devices were carried out. Sensors were also exposed to cyclic bending and the change of pH sensitivity before and after bending was described. Eventually, percolation threshold concerning the amount of ruthenium oxide in the pH-sensitive layer was designated and UV influence on the sensitivity was observed that together allow for optimization of sensors' fabrication costs.

Details

Title
Investigations of Printed Flexible pH Sensing Materials Based on Graphene Platelets and Submicron RuO2 Powders
Author
Janczak, Daniel; Peplowski, Andrzej; Wroblewski, Grzegorz; Gorski, Lukasz; Zwierkowska, Elzbieta; Jakubowska, Malgorzata
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1879601390
Copyright
Copyright © 2017 Daniel Janczak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.