Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Red wine is a well-known alcoholic beverage, and is known to have phenolic compounds (PCs), which contribute to its antioxidant activity and have other beneficial advantages for human health. The aim of this study was to evaluate the effect of the simulated gastro-intestinal digestion and the Caco-2 transepithelial transport assay on the PCs, bioavailability, and the antioxidant capacity of red wines. The contents of PCs in red wine were significantly reduced during most of the digestion phases. Phenolic acid had the greatest permeability, while the flavonols had the weakest. The bioavailability of PCs ranged from 2.08 to 24.01%. The result of the partial least squares structural equation model showed that the three phenols were positively correlated with the antioxidant activity of red wine. The contribution of anthocyanins was the largest (0.8667).

Details

Title
Investigation of the Phenolic Component Bioavailability Using the In Vitro Digestion/Caco-2 Cell Model, as well as the Antioxidant Activity in Chinese Red Wine
Author
Xu, Chunming 1 ; Kong, Lingqiang 2 ; Tian, Yuan 2 

 School of Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China 
 School of Light Industry, Beijing Technology and Business University, Beijing 100048, China 
First page
3108
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724236407
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.