Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aldehyde dehydrogenase 3A1 (ALDH3A1) oxidizes medium-chain aldehydes to their corresponding carboxylic acids. It is expressed at high rates in the human cornea, where it has been characterized as a multi-functional protein displaying various cytoprotective modes of action. Previous studies identified its association with the DNA damage response (DDR) pathway. Here, we utilized a stable transfected HCE-2 (human corneal epithelium) cell line expressing ALDH3A1, to investigate the molecular mechanisms underlying the cytoprotective role(s) of ALDH3A1. Our data revealed morphological differences among the ALDH3A1-expressing and the mock-transfected HCE-2 cells accompanied by differential expression of E-cadherin. Similarly, the ALDH3A1/HCE-2 cells demonstrated higher mobility, reduced proliferation, upregulation of ZEB1, and downregulation of CDK3, and p57. The expression of ALDH3A1 also affected cell cycle progression by inducing the sequestration of HCE-2 cells at the G2/M phase. Following 16 h cell treatments with either H2O2 or etoposide, a significantly lower percentage of ALDH3A1/HCE-2 cells were apoptotic compared to the respective treated mock/HCE-2 cells. Interestingly, the protective effect of ALDH3A1 expression under these oxidative and genotoxic conditions was accompanied by a reduced formation of γ-H2AX foci and higher levels of total and phospho (Ser15) p53. Finally, ALDH3A1 was found to be localized both in the cytoplasm and the nucleus of transfected HCE-2 cells. Its cellular compartmentalization was not affected by oxidant treatment, while the mechanism by which ALDH3A1 translocates to the nucleus remains unknown. In conclusion, ALDH3A1 protects cells from both apoptosis and DNA damage by interacting with key homeostatic mechanisms associated with cellular morphology, cell cycle, and DDR.

Details

Title
Investigating the Functional Roles of Aldehyde Dehydrogenase 3A1 in Human Corneal Epithelial Cells
Author
Voulgaridou, Georgia-Persephoni 1   VIAFID ORCID Logo  ; Theologidis, Vasileios 1 ; Venetikidou, Maria 1 ; Tsochantaridis, Ilias 1   VIAFID ORCID Logo  ; Tsolou, Avgi 1   VIAFID ORCID Logo  ; Koffa, Maria 1   VIAFID ORCID Logo  ; Panayiotidis, Mihalis I 2   VIAFID ORCID Logo  ; Pappa, Aglaia 1   VIAFID ORCID Logo 

 Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece 
 Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus 
First page
5845
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791655717
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.