Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The commercialization of perovskite solar cells is hindered by the poor thermal stability of organic–inorganic hybrid perovskite materials. Herein, we demonstrate that crystalline thermoplastic polymer additives, such as a mixture of polyethylene oxide (PEO, 100,000 MW) and polyethylene glycol (PEG, 12,000 MW), can improve the thermal stability of CH3NH3PbI3 (MAPbI3) perovskites and thereby enhance device stability. High-quality less-defect perovskite films were obtained by establishing a strong reaction between hydroxy groups in the PEO + PEG mixture and the uncoordinated Pb2+ in MAPbI3 perovskites, leading to a high power conversion efficiency of over 18% despite the presence of insulating thermoplastic polymers in the MAPbI3 film. More importantly, as compared with pristine MAPbI3 perovskite solar cells, the PEO + PEG-modified counterparts showed significantly improved stability under thermal treatment at 85 °C in ambient air with a relative humidity of 50–60%, remaining at nearly 71% of their initial efficiency values after 120 h. These demonstrations offer a feasible thermoplastic polymer additive engineering strategy to improve the thermal stability of perovskite solar cells.

Details

Title
Improving Thermal Stability of Perovskite Solar Cells by Thermoplastic Additive Engineering
Author
Uddin, Zaheen 1 ; Junhui Ran 1 ; Stathatos, Elias 2   VIAFID ORCID Logo  ; Yang, Bin 1 

 College of Materials Science and Engineering, Hunan University, Changsha 410082, China 
 Nanotechnology & Advanced Materials Laboratory, Department of Electrical and Computer Engineering, University of the Peloponnese, 26334 Patras, Greece 
First page
3621
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812439167
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.