Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the limited memory and computing resources in the real application of target detection, the method is challenging to implement on mobile and embedded devices. In order to achieve the balance between detection accuracy and speed in pedestrian-intensive scenes, an improved lightweight dense pedestrian detection algorithm GS-YOLOv5 (GhostNet GSConv- SIoU) is proposed in this paper. In the Backbone section, GhostNet is used to replace the original CSPDarknet53 network structure, reducing the number of parameters and computation. The CBL module is replaced with GSConv in the Head section, and the CSP module is replaced with VoV-GSCSP. The SloU loss function is used to replace the original IoU loss function to improve the prediction box overlap problem in dense scenes. The model parameters are reduced by 40% and the calculation amount is reduced by 64% without losing the average accuracy, and the detection accuracy is improved by 0.5%. The experimental results show that the GS-YOLOv5 can detect pedestrians more effectively under limited hardware conditions to cope with dense pedestrian scenes, and it is suitable for the online real-time detection of pedestrians.

Details

Title
An Improved Lightweight Dense Pedestrian Detection Algorithm
Author
Li, Mingjing; Chen, Shuang; Sun, Cong; Fang, Shu; Han, Jinye; Wang, Xiaoli; Haijiao Yun
First page
8757
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2849001241
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.