Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Establishing a heterojunction for two kinds of semiconductor catalysts is a promising way to enhance photocatalytic activity. In this study, nanodiamond (ND) and CuFe-layered double hydroxide (LDH) were hybridized by a simple coprecipitation method as a novel heterojunction to photoactivate H2O2. The ND/LDH possessed a hydrotalcite-like structure, large specific surface area (SBET = 99.16 m2/g), strong absorption of visible-light and low band gap (Eg = 0.94 eV). Under the conditions of ND/LDH dosage 0.0667 g/L, H2O2 concentration 19.6 mmol/L, and without initial pH adjustment, 93.5% of 10 mg/L methylene blue (MB) was degraded within 120 min, while only 78.3% of MB was degraded in the presence of LDH instead of ND/LDH. The ND/LDH exhibited excellent stability and maintained relatively high activity, sufficient to photoactivate H2O2 even after five recycles. The mechanism study revealed that in the heterojunction of ND/LDH, the photoelectrons transferred from the valence band of LDH (Cu/Fe 3d t2g) to the conduction band of LDH (Cu/Fe 3d eg) could spontaneously migrate onto the conduction band of ND, promoting the separation of photo-induced charges. Thus, the photoelectrons had sufficient time to accelerate the redox cycles of Cu3+/Cu2+ and Fe3+/Fe2+ to photoactivate H2O2 to produce hydroxyl radicals, resulting in excellent photo-Fenton efficiency on MB degradation.

Details

Title
Hybridization of Nanodiamond and CuFe-LDH as Heterogeneous Photoactivator for Visible-Light Driven Photo-Fenton Reaction: Photocatalytic Activity and Mechanism
Author
Liu, Lu 1 ; Li, Shijun 2 ; An, Yonglei 2 ; Sun, Xiaochen 1 ; Wu, Honglin 2 ; Li, Junzhi 1 ; Chen, Xue 2 ; Li, Hongdong 1 

 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China 
 Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China 
First page
118
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547526526
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.