Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The problem of staff scheduling in the airline industry is extensively investigated in operational research studies because efficient staff employment can drastically reduce the operational costs of airline companies. Considering the flight schedule of an airline company, staff scheduling is the process of assigning all necessary staff members in such a way that the airline can operate all its flights and construct a roster line for each employee while minimizing the corresponding overall costs for the personnel. This research uses a rostering case study of the ground staff in the aviation industry as an example to illustrate the application of integrating monthly and daily schedules. The ground staff in the aviation industry case is a rostering problem that includes three different types of personnel scheduling results: fluctuation-centered, mobility-centered, and project-centered planning. This paper presents an integrated mixed integer programming (MIP) model for determining the manpower requirements and related personnel shift designs for the ground staff at the airline to minimize manpower costs. The aim of this study is to complete the planning of the monthly and daily schedules simultaneously. A case study based on real-life data shows that this model is useful for the manpower planning of ground services at the airline and that the integrated approach is superior to the traditional two-stage approach.

Details

Title
A Hybrid Personnel Scheduling Model for Staff Rostering Problems
Author
Ming-Kung, Huang; Chu-Yi, Huang
First page
1702
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548821789
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.