Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Human–object interaction (HOI) recognition is a very challenging task due to the ambiguity brought by occlusions, viewpoints, and poses. Because of the limited interaction information in the image domain, extracting 3D features of a point cloud has been an important means to improve the recognition performance of HOI. However, the features neglect topological features of adjacent points at low level, and the deep topology relation between a human and an object at high level. In this paper, we present a 3D human–object mesh topology enhanced method (HOME) for HOI recognition in images. In the method, human–object mesh (HOM) is built by integrating the reconstructed human and object mesh from images firstly. Therefore, under the assumption that the interaction comes from the macroscopic pattern constructed by spatial position and microscopic topology of human–object, HOM is inputted into MeshCNN to extract the effective edge features by edge-based convolution from bottom to up, as the topological features that encode the invariance of the interaction relationship. At last, topological cues are fused with visual cues to enhance the recognition performance greatly. In the experiment, HOI recognition results have achieved an improvement of about 4.3% mean average precision (mAP) in the Rare cases of the HICO-DET dataset, which verifies the effectiveness of the proposed method.

Details

Title
HOME: 3D Human–Object Mesh Topology-Enhanced Interaction Recognition in Images
Author
Peng, Weilong 1 ; Li, Cong 1 ; Tang, Keke 2 ; Liu, Xianyong 3 ; Fang, Meie 1   VIAFID ORCID Logo 

 School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 511442, China 
 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 511442, China 
 Robotics Institute, Ningbo University of Technology, Ningbo 315100, China 
First page
2841
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706246310
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.