Full Text

Turn on search term navigation

Copyright Nature Publishing Group Jan 2017

Abstract

Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications.

Details

Title
High-throughput automated microfluidic sample preparation for accurate microbial genomics
Author
Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C
Pages
13919
Publication year
2017
Publication date
Jan 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1862125468
Copyright
Copyright Nature Publishing Group Jan 2017