Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The KNOX genes play important roles in maintaining SAM and regulating the development of plant leaves. However, the TaKNOX genes in wheat are still not well understood, especially their role in abiotic stress. In this study, a total of 36 KNOX genes were identified, and we demonstrated the function of the TaKNOX14-D gene under mechanical injury and cold stress. Thirty-six TaKNOX genes were divided into two groups, and thirty-four TaKNOX genes were predicted to be located in the nucleus by Cell-PLoc. These genes contained five tandem duplications. Fifteen collinear gene pairs were exhibited in wheat and rice, one collinear gene pair was exhibited in wheat and Arabidopsis. The phylogenetic tree and motif analysis suggested that the TaKNOX gene appeared before C3 and C4 diverged. Gene structure showed that the numbers of exons and introns in TaKNOX gene are different. Wheat TaKNOX genes showed different expression patterns during the wheat growth phase, with seven TaKNOX genes being highly expressed in the whole growth period. These seven genes were also highly expressed in most tissues, and also responded to most abiotic stress. Eleven TaKNOX genes were up-regulated in the tillering node during the leaf regeneration period after mechanical damage. When treating the wheat with different hormones, the expression patterns of TaKNOX were changed, and results showed that ABA promoted TaKNOX expression and seven TaKNOX genes were up-regulated under cytokinin and auxin treatment. Overexpression of the TaKNOX14-D gene in Arabidopsis could increase the leaf size, plant height and seed size. This gene overexpression in Arabidopsis also increased the compensatory growth capacity after mechanical damage. Overexpression lines also showed high resistance to cold stress. This study provides a better understanding of the TaKNOX genes.

Details

Title
Genome-Wide Identification of Wheat KNOX Gene Family and Functional Characterization of TaKNOX14-D in Plants
Author
Li, Song; Yao, Yaxin; Ye, Wenjie; Wang, Shaoyu; Zhang, Chao  VIAFID ORCID Logo  ; Liu, Shudong; Sun, Fengli; Xi, Yajun
First page
15918
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756738760
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.