Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The mole cricket Gryllotalpa orientalis is an evolutionarily, medicinal, and agriculturally significant insect that inhabits underground environments and is distributed globally. This study measured genome size by flow cytometry and k-mer based on low-coverage sequencing, and nuclear repetitive elements were also identified. The haploid genome size estimate is 3.14 Gb by flow cytometry, 3.17 Gb, and 3.77 Gb-based two k-mer methods, respectively, which is well within the range previously reported for other species of the suborder Ensifera. 56% of repetitive elements were found in G. orientalis, similar to 56.83% in Locusta migratoria. However, the great size of repetitive sequences could not be annotated to specific repeat element families. For the repetitive elements that were annotated, Class I-LINE retrotransposon elements were the most common families and more abundant than satellite and Class I-LTR. These results based on the newly developed genome survey could be used in the taxonomic study and whole genome sequencing to improve the understanding of the biology of G. orientalis.

Details

Title
Genome Survey Sequencing of the Mole Cricket Gryllotalpa orientalis
Author
Kuo, Sun 1   VIAFID ORCID Logo  ; De-Long, Guan 2   VIAFID ORCID Logo  ; Hua-Teng, Huang 1 ; Sheng-Quan, Xu 1   VIAFID ORCID Logo 

 College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China 
 School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China 
First page
255
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779531915
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.