Full Text

Turn on search term navigation

© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Trehalose 6‐phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source‐ and sink‐related traits remain largely unknown. We used enrichment capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield‐related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain‐related traits. Three TPS1 homologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain‐related traits. Gene‐based prediction improved predictive ability for grain weight when gene effects were combined with the whole‐genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes.

Details

Title
Gene‐based mapping of trehalose biosynthetic pathway genes reveals association with source‐ and sink‐related yield traits in a spring wheat panel
Author
Lyra, Danilo H 1   VIAFID ORCID Logo  ; Griffiths, Cara A 2   VIAFID ORCID Logo  ; Watson, Amy 2   VIAFID ORCID Logo  ; Ryan Joynson 3   VIAFID ORCID Logo  ; Molero, Gemma 4   VIAFID ORCID Logo  ; Alina‐Andrada Igna 2   VIAFID ORCID Logo  ; Keywan Hassani‐Pak 1   VIAFID ORCID Logo  ; Reynolds, Matthew P 4 ; Hall, Anthony 3   VIAFID ORCID Logo  ; Paul, Matthew J 2   VIAFID ORCID Logo 

 Computational & Analytical Sciences, Rothamsted Research, Harpenden, UK 
 Plant Sciences, Rothamsted Research, Harpenden, UK 
 The Earlham Institute, Norwich, UK 
 Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico 
Section
ORIGINAL RESEARCH
Publication year
2021
Publication date
Aug 2021
Publisher
John Wiley & Sons, Inc.
e-ISSN
20483694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2562446565
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.