Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

The study provides a method of generating key performance indicators for maintenance and management dashboards as well as a basis of introducing adaptive control in drive systems, which would apply an appropriate control algorithm depending on the circumstances of the drive operation. It minimises energy losses in technological processes.

Abstract

The article presents a method of generating key performance indicators related to electric motor energy efficiency on the basis of Big Data gathered and processed in a frequency converter. The authors proved that using the proposed solution, it is possible to specify the relation between the control mode of an electric drive and the control quality-energy consumption ratio in the start-up phase as well as in the steady operation with various mechanical loads. The tests were carried out on a stand equipped with two electric motors (one driving, the other used to apply the load by adjusting the parameters of the built-in brake). The measurements were made in two load cases, for motor control modes available in industrially applied frequency converters (scalar V/f, vector Voltage flux control without encoder, vector voltage flux control with encoder, vector current flux control, and vector current flux control with torque control). During the experiments, values of the current intensities (active and output), the actual frequency value, IxT utilization factor, relative torque, and the current rotational speed were measured and processed. Based on the data, the level of energy efficiency was determined for various control modes.

Details

Title
Frequency Converter as a Node for Edge Computing of Big Data, Related to Drive Efficiency, in Industrial Internet of Things
Author
Hetmańczyk, Mariusz Piotr; Malaka, Julian  VIAFID ORCID Logo 
First page
9784
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2624250796
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.