Content area
Full Text
Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and is also linked to other neurologic and psychiatric disorders. FXS is caused by a triplet expansion that inhibits expression of the FMR1 gene; the gene product, FMRP, regulates mRNA metabolism in the brain and thus controls the expression of key molecules involved in receptor signaling and spine morphology. While there is no definitive cure for FXS, the understanding of FMRP function has paved the way for rational treatment designs that could potentially reverse many of the neurobiological changes observed in FXS. Additionally, behavioral, pharmacological, and cognitive interventions can raise the quality of life for both patients and their families.
Genetics of fragile X
Fragile X syndrome (FXS), an X-linked condition first described by Martin and Bell (1), is the leading cause of inherited intellectual disability (ID). Estimates report that FXS affects approximately 1 in 2,500 to 5,000 men and 1 in 4,000 to 6,000 women (2, 3). FXS is caused by mutations in the FMR1 gene, which is located on the X chromosome and whose locus at Xq27.3 coincides with the folate-sensitive fragile site (4, 5). Cytogenetic methods (6) used in the past to diagnose FXS have been replaced by molecular diagnostic ofFMRl DNA using Southern blot analysis and, more recently, PCR.
Affected men display varying degrees of symptoms ranging from mild to severe. Due to compensation by the unaffected X chromosome, only one-third of female carriers with a full mutation (FM) have ID; the majority have normal IQ, although learning difficulties and emotional problems are common (7).
Identified in 1991 by positional cloning (8), the FMR1 gene is characterized by the presence of a polymorphic CGG triplet sequence in the 5' UTR (8, 9). Expansion in this triplet sequence gives rise to FXS, which is the prototype of unstable triplet expansion disorders. The triplet variability defines four types of alleles (Figure 1). Normal alleles have a number of CGG repeats, ranging from 5 to 54, with a mode of 30. Premutation (PM) alleles have a number of CGG repeats, ranging from 55 to 200. PM alleles are unstable and have a strong tendency to expand to FM alleles upon maternal transmission. Expansion from a PM to FM can occur...