Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plutonium mononitride is one of the main fuels for Generation IV reactors and can be prepared from nitrogenation of plutonium hydride. We investigated the adsorption and dissociation of nitrogen on PuH2 (111) surface to elaborate the initial stage of nitrogenation. The adsorption energies varied greatly with respect to the adsorption sites and orientations of the adsorbed molecule. The nitrogen exhibited preferential adsorption above the ccp site, where the molecular nitrogen was nearly parallel to the PuH2 surface and pointed to the nearest Pu atom. The orbital hybridization and the electrostatic attraction between the Pu and N weakened the N-N bond in the adsorbed molecule. The mechanism of the dissociation process was investigated within transition state theory, and the analysis of the activation barrier indicated that dissociation of nitrogen is not the rate-determining step of nitrogenation. These findings can contribute to a better understanding of the nuclear fuel cycle.

Details

Title
First-Principles Study of Nitrogen Adsorption and Dissociation on PuH2 (111) Surface
Author
Wang, Changshui; Zhang, Kai; Song, Peng; Hu, Xiaofei; Mu, Jinglin; Miao, Zhichao; Zhou, Jin  VIAFID ORCID Logo  ; He, Hui
First page
1891
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2394445628
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.