It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Music recommender systems have become a key technology to support the interaction of users with the increasingly larger music catalogs of on-line music streaming services, on-line music shops, and personal devices. An important task in music recommender systems is the automated continuation of music playlists, that enables the recommendation of music streams adapting to given (possibly short) listening sessions. Previous works have shown that applying collaborative filtering to collections of curated music playlists reveals underlying playlist-song co-occurrence patterns that are useful to predict playlist continuations. However, most music collections exhibit a pronounced long-tailed distribution. The majority of songs occur only in few playlists and, as a consequence, they are poorly represented by collaborative filtering. We introduce two feature-combination hybrid recommender systems that extend collaborative filtering by integrating the collaborative information encoded in curated music playlists with any type of song feature vector representation. We conduct off-line experiments to assess the performance of the proposed systems to recover withheld playlist continuations, and we compare them to competitive pure and hybrid collaborative filtering baselines. The results of the experiments indicate that the introduced feature-combination hybrid recommender systems can more accurately predict fitting playlist continuations as a result of their improved representation of songs occurring in few playlists.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Institute of Computational Perception, Johannes Kepler University Linz, Linz, Austria
2 Pandora Media Inc., Oakland, CA, USA
3 Institute of Computational Perception, Johannes Kepler University Linz, Linz, Austria; Austrian Research Institute for Artificial Intelligence, Vienna, Austria