Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Biometrics has been evolving as an exciting yet challenging area in the last decade. Though face recognition is one of the most promising biometrics techniques, it is vulnerable to spoofing threats. Many researchers focus on face liveness detection to protect biometric authentication systems from spoofing attacks with printed photos, video replays, etc. As a result, it is critical to investigate the current research concerning face liveness detection, to address whether recent advancements can give solutions to mitigate the rising challenges. This research performed a systematic review using the PRISMA approach by exploring the most relevant electronic databases. The article selection process follows preset inclusion and exclusion criteria. The conceptual analysis examines the data retrieved from the selected papers. To the author, this is one of the foremost systematic literature reviews dedicated to face-liveness detection that evaluates existing academic material published in the last decade. The research discusses face spoofing attacks, various feature extraction strategies, and Artificial Intelligence approaches in face liveness detection. Artificial intelligence-based methods, including Machine Learning and Deep Learning algorithms used for face liveness detection, have been discussed in the research. New research areas such as Explainable Artificial Intelligence, Federated Learning, Transfer learning, and Meta-Learning in face liveness detection, are also considered. A list of datasets, evaluation metrics, challenges, and future directions are discussed. Despite the recent and substantial achievements in this field, the challenges make the research in face liveness detection fascinating.

Details

Title
Face Liveness Detection Using Artificial Intelligence Techniques: A Systematic Literature Review and Future Directions
Author
Khairnar, Smita 1   VIAFID ORCID Logo  ; Gite, Shilpa 2 ; Kotecha, Ketan 2   VIAFID ORCID Logo  ; Thepade, Sudeep D 3   VIAFID ORCID Logo 

 Department of Artificial Intelligence and Machine Learning, Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology, Symbiosis International (Deemed) University (SIU), Lavale, Pune 412115, India; Department of Computer Engineering, Pimpri Chinchwad College of Engineering, SPPU, Pune 411044, India 
 Department of Artificial Intelligence and Machine Learning, Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology, Symbiosis International (Deemed) University (SIU), Lavale, Pune 412115, India 
 Department of Computer Engineering, Pimpri Chinchwad College of Engineering, SPPU, Pune 411044, India 
First page
37
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791570909
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.