Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An accurate estimation of the state of health (SOH) of lithium-ion batteries is essential for the safe and reliable operation of electric vehicles. As a single hidden-layer feedforward neural network, extreme learning machine (ELM) has the advantages of a fast learning speed and good generalization performance. The bat algorithm (BA) is a swarm intelligence optimization algorithm based on bat echolocation for foraging. In this study, BA was creatively applied to improve the ELM neural network, forming a BA-ELM model, and it was applied to SOH estimation for the first time. First, through Pearson and Spearman correlation analysis, six variables were determined as the input variables of the model. The actual remaining capacity of the battery was determined as the output variable. Second, BA was used to optimize the connection weights and bias in ELM to construct the BA-ELM model. Third, the battery data set was trained and tested with BA-ELM, ELM, Elman, back propagation (BP), radial basis function (RBF), and general regression neural network (GRNN) models. Five statistical error indicators, and the radar chart, scatter plot, and violin diagram were used to compare the estimation effects. The results show that the evaluation function of BA-ELM can converge quickly and effectively optimize the network model of ELM. The RMSE of the BA-ELM model was 0.5354%, and the MAE was 0.4326%, which is the smallest among the 6 models. The RMSE values of the other model were 2.27%, 3.53%, 3.07%, 3.86%, 3.24%, respectively, indicating the BA-ELM has good potential for future applications.

Details

Title
Extreme Learning Machine Using Bat Optimization Algorithm for Estimating State of Health of Lithium-Ion Batteries
Author
Ge, Dongdong 1   VIAFID ORCID Logo  ; Zhang, Zhendong 2   VIAFID ORCID Logo  ; Kong, Xiangdong 3   VIAFID ORCID Logo  ; Wan, Zhiping 4   VIAFID ORCID Logo 

 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; [email protected]; Institute of Transportation, Zhejiang Industry Polytechnic College, Shaoxing 312000, China 
 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; [email protected] 
 School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; [email protected] 
 Institute of Transportation, Zhejiang Industry Polytechnic College, Shaoxing 312000, China 
First page
1398
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2636121875
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.