Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The crystallization of peptides offers a sustainable and inexpensive alternative to the purification process. In this study, diglycine was crystallised in porous silica, showing the porous templates’ positive yet discriminating effect. The diglycine induction time was reduced by five-fold and three-fold upon crystallising in the presence of silica with pore sizes of 6 nm and 10 nm, respectively. The diglycine induction time had a direct relationship with the silica pore size. The stable form (α-form) of diglycine was crystallised in the presence of porous silica, with the diglycine crystals obtained associated with the silica particles. Further, we studied the mechanical properties of diglycine tablets for their tabletability, compactability, and compressibility. The mechanical properties of the diglycine tablets were similar to those of pure MCC, even with the presence of diglycine crystals in the tablets. The diffusion studies of the tablets using the dialysis membrane presented an extended release of diglycine through the dialysis membrane, confirming that the peptide crystal can be used for oral formulation. Hence, the crystallization of peptides preserved their mechanical and pharmacological properties. More data on different peptides can help us produce oral formulation peptides faster than usual.

Details

Title
Experimental Elucidation of Templated Crystallization and Secondary Processing of Peptides
Author
Verma, Vivek 1   VIAFID ORCID Logo  ; Bade, Isha 1   VIAFID ORCID Logo  ; Karde, Vikram 1 ; Heng, Jerry Y Y 2   VIAFID ORCID Logo 

 Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; [email protected] (I.B.); [email protected] (V.K.) 
 Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; [email protected] (I.B.); [email protected] (V.K.); Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK 
First page
1288
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806571453
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.