Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of continuous fiber as reinforcement in polymer additive manufacturing technologies enhances the mechanical performance of the manufactured parts. This is the case of the Carbon-Fiber reinforced PolyAmide (CF/PA) used by the MarkForged MarkTwo® 3D printer. However, the information available on the mechanical properties of this material is limited and with large variability. In this work, the in-plane mechanical properties and the interlaminar fracture toughness in modes I and II of Markforged’s CF/PA are experimentally investigated. Two different standard specimens and end-tabs are considered for the in-plane properties. Monolithic CF/PA specimens without any additional reinforcement are used for the interlaminar fracture toughness characterization. Two different mode I specimen configurations are compared, and two different test types are considered for mode II. The results show that prismatic specimens with paper end-tabs are more appropriate for the characterization of the in-plane material properties. The use of thick specimens for mode I fracture toughness tests complicates the characterization and can lead to erroneous results. Contrary to what has been reported in the literature for the same material, fracture toughness in mode I is lower than for mode II, which agrees with the normal tendency of traditional composite materials.

Details

Title
Experimental Characterization and Analysis of the In-Plane Elastic Properties and Interlaminar Fracture Toughness of a 3D-Printed Continuous Carbon Fiber-Reinforced Composite
Author
Santos, Jonnathan D 1   VIAFID ORCID Logo  ; Fernández, Alex 2 ; Ripoll, Lluís 2 ; Blanco, Norbert 2   VIAFID ORCID Logo 

 Grupo de Investigación en Nuevos Materiales y Procesos de Transformación (GIMAT), Universidad Politécnica Salesiana, Calle Vieja 12-30 y Elia Liut, Cuenca 010105, Ecuador; jsantos@ups.edu.ec 
 Analysis and Advanced Materials for Structural Design (AMADE), Department of Mechanical Engineering and Industrial Construction, Universitat de Girona, Avda. M. Aurèlia Capmany 61, 17003 Girona, Spain; alex.fernandez@udg.edu (A.F.); lluis.ripoll@udg.edu (L.R.) 
First page
506
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627815309
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.