Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study proposes a tripartite evolutionary game model to investigate the interactions among digital platforms, governments, and users to address the negative consequences of data abuse. The paper identifies that the high tax incentives and low penalties set by the government will increase the incentive for data abuse by platforms of different sizes, and the government can try to set up a tax ladder policy for platforms of different sizes and a dynamic penalty amount based on platform revenue. The study also reveals that user participation in supervision can reduce information asymmetry, and decrease the cost of government regulation. However, the single constraint of users is less effective than government regulation or dual user-government regulation. Additionally, the presence of privacy leakage risks prompts digital platforms to adopt compound engines to implement data abuse. Hence, the relevant government regulatory policies should consider the efficiency and cost of data security technology for timely adjustments. This research contributes to understanding the complex relationships among digital platforms, governments, and users and highlights the need for appropriate measures to mitigate the negative effects of data abuse.

Details

Title
Evolutionary Analysis of the Regulation of Data Abuse in Digital Platforms
Author
Wang, Zhen 1   VIAFID ORCID Logo  ; Yuan, Chunhui 1 ; Li, Xiaolong 2 

 School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100087, China; [email protected] 
 School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100087, China; [email protected] 
First page
188
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20798954
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806591756
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.