Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ethiopia is one of the sub-Saharan countries affected by land degradation, notably by soil erosion. The government of Ethiopia has launched an extensive biophysical soil and water conservation (SWC) effort each year to address the problem. These practices were installed on varying land use and land cover (LULC) systems. Despite the fact that the interventions covered the majority of the landmasses, there were no quantitative data on the scale of biophysical measures with the change in land use and land cover. Therefore, the objective of this study was to evaluate biophysical conservation practices with dynamic land use and land cover in the highlands of Ethiopia. The study focused on districts of the Amhara regional state’s South Gondar zone. A mixed research methodology was employed to gather pertinent data for the study. The dynamics of LULC were analyzed using satellite images acquired between 1990 and 2020. Biophysical conservation measures’ data and qualitative information were collected from the zonal office of agriculture. Twelve years’ worth of biophysical SWC measures data were used for the study. The results indicate that cultivated land makes up the majority of land use and land cover. Bunds built on cultivated land account for 93% of conservation practices. During the study period, there was a significant decline of biophysical conservation practices implementation in each district. Although plantation was used on a wider scale, it was unable to sustain physical SWC practices or expand forest cover in the region. In addition, lack of integrated maintenance for early installed structures decreases the effectiveness of SWC measures. In conclusion, the dynamics of LULC have a significant impact on the magnitude of biophysical conservation measures. Therefore, watershed managers shall consider the spatio-temporal variation of LULC while planning conservation practices.

Details

Title
Evaluating Biophysical Conservation Practices with Dynamic Land Use and Land Cover in the Highlands of Ethiopia
Author
Addisie, Meseret B 1 ; Molla, Gashaw 2   VIAFID ORCID Logo  ; Menberu Teshome 3 ; Ayele, Gebiaw T 4   VIAFID ORCID Logo 

 Guna Tana Integrated Field Research and Development Center, Debre Tabor University, Debre Tabor P.O.Box 272, Ethiopia 
 Department of Geography and Environmental Studies, Bahir Dar University, Bahir Dar P.O.Box 79, Ethiopia 
 Department of Geography and Environmental Studies, Debre Tabor University, Debre Tabor P.O.Box 272, Ethiopia 
 Australian Rivers Institute, School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia 
First page
2187
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756737036
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.