Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Underwater images often suffer from low contrast, low visibility, and color deviation. In this work, we propose a hybrid underwater enhancement method consisting of addressing an inverse problem with novel Retinex transmission map estimation and adaptive color correction. Retinex transmission map estimation does not rely on channel priors and aims to decouple from the unknown background light, thus avoiding error accumulation problem. To this end, global white balance is performed before estimating the transmission map using multi-scale Retinex. To further improve the enhancement performance, we design the adaptive color correction which cleverly chooses between two color correction procedures and prevents channel stretching imbalance. Quantitative and qualitative comparisons of our method and state-of-the-art underwater image enhancement methods demonstrate superiority of the proposed method. It achieves the best performance in terms of full-reference image quality assessment. In addition, it also achieves superior performance in the non-reference evaluation.

Details

Title
Enhancement of Underwater Images with Retinex Transmission Map and Adaptive Color Correction
Author
Chen, Erkang 1   VIAFID ORCID Logo  ; Tian Ye 1 ; Chen, Qianru 2 ; Huang, Bin 3 ; Hu, Yendo 1 

 School of Ocean Information Engineering, Jimei University, Xiamen 361021, China 
 School of Informatics, Xiamen University, Xiamen 361005, China 
 College of Computing Engineering, Jimei University, Xiamen 361021, China 
First page
1973
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779899540
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.