Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Blast furnace gas is the major combustible by-product produced in the steel industry, where iron ore is reduced by coke into iron. Direct combustion of blast furnace gas after simple treatment for power generation is a common utilization method nowadays. However, this method suffers from low efficiency and high carbon intensity. The use of gas-steam combined cycle is an excellent method to improve the efficiency of blast furnace gas for power generation. However, there is a problem of insufficient utilization of low product heat, and the addition of CCS system can further reduce the power efficiency. To solve these issues, a new blast furnace gas power generation system with a Brayton cycle with supercritical CO2 and a Rankine cycle with transcritical CO2 is proposed in this work. The new system is then thermodynamically simulated by Aspen Plus, after the sub-modules are validated. The effects of molar ratio of steam to carbon, selexol/CO2 mass ratio, compression ratio, turbine import temperature and turbine inlet pressure on the system are investigated. A comparison is also performed between the new combined cycle system and the traditional combined cycle power generation system. The results show that in the new power generation system, net power efficiency of 53.29%, carbon capture efficiency of 95.78% and sulfur capture rate of 94.46% can be achieved, which is significantly better than the performance of the conventional combined cycle.

Details

Title
Energy and Exergy Analysis on a Blast Furnace Gas-Driven Cascade Power Cycle
Author
Chen, Hao 1 ; Wang, Yiming 1 ; Linbo Yan 1 ; Wang, Ziliang 2 ; He, Boshu 1   VIAFID ORCID Logo  ; Fang, Baizeng 3   VIAFID ORCID Logo 

 Institute of Combustion and Thermal System, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China 
 School of Energy and Power Engineering, Shandong University, Jinan 250061, China 
 Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada 
First page
8078
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734627155
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.