Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Based on the contribution of elements and chemical bonds, the UNICAC (Universal Quasi-Chemical elements and chemical bonds Activity Coefficient) method was proposed to estimate the activity coefficients of nonelectrolyte liquid mixtures. The UNICAC method defined 10 elements and 33 chemical bonds as contribution groups. The calculation of activity coefficients was divided into the combination term and the residual term. The combination term represents molecular size differences, and the residual term describes the interaction between molecules. The interaction energy parameters of 43 groups were regressed simultaneously with the experimental data of the vapor–liquid equilibrium of 1085 binary systems. According to the molecular structural information of compounds, the UNICAC method can accurately predict the activity coefficients of nonelectrolyte liquid mixtures. The vapor–liquid equilibrium of 16 groups of the binary system, which were not included in the parameters regress, was predicted using UNICAC. The average relative error of vapor composition was 1.53%. Compared with UNIFAC (2003), UNIFAC (Lyngby), UNIFAC (Dortmund), and ASOG (2011), the UNICAC model employs fewer parameters, provides a broader scope of application, and receives more precise predicted results of the vapor–liquid equilibrium. The UNICAC method would play an important reference role in the design of the chemical separation process.

Details

Title
Elements and Chemical Bonds Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures
Author
Liu, Haodong 1 ; Li, Xinyu 1 ; Wang, Yuxin 1 ; Sun, Xiaoyan 1 ; Zhao, Wenying 2 ; Li, Xia 1 ; Xiang, Shuguang 1 

 Institute of Process System Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China 
 College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China 
First page
2141
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728521975
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.