Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A particle system’s large-deformation shear flow exhibits obvious random characteristics, making accurate modeling of the particle system difficult. Particle systems, which are frequently used in engineering, are prone to breakage, which introduces additional uncertainty into the system. The purpose of this study was to conduct ring-shear experiments on a variety of common engineering materials in order to quantify the effect of the dynamic crushing process of the particle system on the instability of shear flow. Different shear fracture characteristics may result in a change in the volume trend of the system, from dilatancy to shrinkage. While the mean value of the crushable system’s stress ratio does not increase with shear rate, the stress ratio’s fluctuation characteristic parameters are negatively correlated with shear rate. As particles become more easily sheared, the initial value of the stress ratio fluctuation increases. The effect of shear rate on the fluctuation in the system stress ratio is determined indirectly by the degree of system fragmentation. The study of the particle system’s fluctuation characteristics will aid in developing a stochastic dynamic model for the landslide system in the future, allowing for improved prediction and prevention of landslide disasters.

Details

Title
Effects of Crushing Characteristics on Rheological Characteristics of Particle Systems
Author
Huang, Yu 1   VIAFID ORCID Logo  ; Yi’an Wang 2 ; Wang, Suran 2 

 Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; [email protected] (Y.W.); [email protected] (S.W.); Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China 
 Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; [email protected] (Y.W.); [email protected] (S.W.) 
First page
532
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633204677
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.