Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The obvious advantages of laser paint removal technology make it a viable alternative to traditional paint removal methods. Infrared nanosecond laser was used to remove paint from car body. The microstructure, composition, surface roughness, hardness and ablative products of the samples were analyzed. The effect of the process combination of laser defocus distance and ambient atmosphere (ambient air, compressed air and inert atmosphere) on the substrate damage and the paint removal effectiveness was explored, and the related mechanism was discussed. Defocus not only changed the fluence of laser spot but also increased the spot diameter. The effect of defocused laser paint removal on the paint and substrate was caused by the superposition of these two factors. The results show that the laser with defocus distance of +4 mm effectively removed the paint in inert atmosphere and has the least adverse effect on the substrate. The content of C element and organic components on the substrate surface was the lowest, and its surface roughness and hardness was very close to the uncoated substrate. Focused laser paint removal in ambient air caused the most serious damage to the substrate. Its surface microhardness increased by 11 HV, and the influence depth reached 37 µm. The mechanism of laser paint removal without auxiliary gas is the superposition of laser plasma effect, laser gasification effect and thermal stress effect. In open atmosphere (compressed air and inert atmosphere), the mechanism of laser paint removal is laser gasification effect and thermal stress effect. This research can provide practical references and theoretical basis for the large-scale industrial application of low/non-damage laser paint removal technology.

Details

Title
Effect of Defocused Nanosecond Laser Paint Removal on Mild Steel Substrate in Ambient Atmosphere
Author
Zheng, Zhong  VIAFID ORCID Logo  ; Wang, Chaofan; Huang, Gang; Feng, Wenju; Liu, Dun  VIAFID ORCID Logo 
First page
5969
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584441743
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.