Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The decreasing temperature reciprocating upsetting-extrusion (RUE) deformation experiment was carried out on Mg-Gd-Y-Zr alloy to study RUE deformation on the influence of microstructure of the alloy. This work showed that with the gradual increase of RUE deformation passes, the continuous dynamic recrystallization (CDRX) process and the discontinuous dynamic recrystallization (DDRX) process occurred at the same time, and the grain refinement effect was obvious. Particulate precipitation induced the generation of DRX through particle-stimulated nucleation (PSN). In addition, after one pass of RUE deformation, the alloy produced a strong basal texture. As the RUE experiment proceeded, the basal texture intensity decreased. The weakening of the texture was due to the combined effect of DRX and alternating loading forces in the axial and radial directions. After four RUE passes, the mechanical properties of the alloy had been significantly improved, which was the result of the combined effect of dislocation strengthening, fine grain strengthening, and second phase strengthening.

Details

Title
Effect of Decreasing Temperature Reciprocating Upsetting-Extrusion on Microstructure and Mechanical Properties of Mg-Gd-Y-Zr Alloy
Author
Xu, Wenlong; Yu, Jianmin; Wu, Guoqin; Jia, Leichen; Gao, Zhi; Zhan Miao; Zhang, Zhimin  VIAFID ORCID Logo  ; Feng, Yan
First page
985
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2427189192
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.