Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the effect of gradually increasing amounts of KMnO4 (10−4, 10−3, 10−2 mol·L−1) in cement paste on the bond strength of a plain hot-dip galvanized steel bar was evaluated. The open-circuit potential of HDG samples in cement paste with various additions of MnO4 was monitored in order to follow a transfer of zinc from activity to passivity. Furthermore, the influence of the addition of these anions on the physicochemical properties of normal-strength concrete or cement paste was evaluated by means of hydration heat measurements, X-ray diffraction analysis, and compressive strength. The effective concentration of MnO4 anions prevents the corrosion of the coating with hydrogen evolution and ensures that the bond strength is not reduced by their action, which was determined to be 10−3 mol·L−1. Lower additions of MnO4 anions (10−4 mol·L−1) are ineffective in this respect. On the other hand, higher additions of MnO4 anions (10−2 mol·L−1), although they ensure the corrosion of the coating in fresh concrete without hydrogen evolution, but affect the hydration process of the cement paste that was demonstrated by slight water separation.

Details

Title
The Effect of Addition Potassium Permanganate on Bond Strength of Hot-Dip Galvanized Plain Bars with Cement Paste
Author
Pokorný, Petr 1   VIAFID ORCID Logo  ; Vacek, Vítězslav 1 ; Prodanovic, Nikola 1   VIAFID ORCID Logo  ; Zabloudil, Adam 2   VIAFID ORCID Logo  ; Hurtig, Karel 2   VIAFID ORCID Logo 

 Department of Building Materials, Klokner Institute, Czech Technical University in Prague, 166 08 Prague, Czech Republic 
 Department of Experimental Methods, Klokner Institute, Czech Technical University in Prague, 166 08 Prague, Czech Republic 
First page
2556
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799648077
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.