Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dual atom catalysts (DACs) not only retain uniform active sites and high atomic utilization efficiency as the single atom catalysts, but the two adjacent metal sites also cooperate and play a synergistic role to achieve additional benefits. However, the relationships connecting their dual-site synergistic effects on catalytic performance are not well rationalized due to limited pairs available from experiments. Herein, Fe/M dual sites supported by nitrogen doped carbon (Fe/M-N-C whereby M from 3 d–5 d electron containing transition metals) have been screened as an oxygen reduction reaction (ORR) catalyst. The results show that the absorption strength of ORR intermediates on four nitrogen coordinated metals is weaker than the three coordinated metals, which promotes favourable ORR activities. As a result, we recommended FeIr, FeRh, FeRu and FeOs as promising ORR catalysts. Ab initio molecular dynamic (AIMD) simulations suggest Fe/M-N-C (M = Ir, Rh, Ru and Os) catalysts with encouraging structural stability at room temperature. Furthermore, it is found that the nitrogen atoms in-between metals are vulnerable sites for proton attacking, yet the protonation process demands high energy, even under O2 atmosphere, which underlines good tolerance under acidic conditions. This work provides a broad understanding of Fe based catalyst and a new direction for catalytic design.

Details

Title
Dual Metal Site Fe Single Atom Catalyst with Improved Stability in Acidic Conditions
Author
Wang, Yuehua 1 ; Li, Shuang 2 ; Xu, Rui 2 ; Chen, Junpeng 2 ; Hao, Yifan 2 ; Li, Ke 2 ; Li, Yan 2 ; Li, Yingmei 1 ; Wang, Jing 3 

 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 
 Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, China 
 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, China 
First page
418
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779462980
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.