Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The growth and development of generative organs of the tomato plant are essential for yield estimation and higher productivity. Since the time-consuming manual counting methods are inaccurate and costly in a challenging environment, including leaf and branch obstruction and duplicate tomato counts, a fast and automated method is required. This research introduces a computer vision and AI-based drone system to detect and count tomato flowers and fruits, which is a crucial step for developing automated harvesting, which improves time efficiency for farmers and decreases the required workforce. The proposed method utilizes the drone footage of greenhouse tomatoes data set containing three classes (red tomato, green tomato, and flower) to train and test the counting model through YOLO V5 and Deep Sort cutting-edge deep learning algorithms. The best model for all classes is obtained at epoch 96 with an accuracy of 0.618 at mAP 0.5. Precision and recall values are determined as 1 and 0.85 at 0.923 and 0 confidence levels, respectively. The F1 scores of red tomato, green tomato, and flower classes are determined as 0.74, 0.56, and 0.61, respectively. The average F1 score for all classes is also obtained as 0.63. Through obtained detection and counting model, the tomato fruits and flowers are counted systematically from the greenhouse environment. The manual and AI-Drone counting results show that red tomato, green tomato, and flowers have 85%, 99%, and 50% accuracy, respectively.

Details

Title
Drone-Computer Communication Based Tomato Generative Organ Counting Model Using YOLO V5 and Deep-Sort
Author
Egi, Yunus 1   VIAFID ORCID Logo  ; Hajyzadeh, Mortaza 2 ; Eyceyurt, Engin 3   VIAFID ORCID Logo 

 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait 
 Department of Field Crop, Faculty of Agriculture, Şırnak University, Şırnak 73000, Türkiye 
 Department of Electrical and Electronics Engineering, Faculty of Engineering and Arts, Nevşehir Haci Bektaş Veli University, Nevşehir 50300, Türkiye 
First page
1290
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716470847
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.