Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Linear infrastructures, such as railways, tunnels, and pipelines, play essential roles in economic and social development worldwide. However, under the influence of geohazards, earthquakes, and human activities, linear infrastructures face the potential risk of damage and may not function properly. Current monitoring systems for linear infrastructures are mainly based on non-contact detection (InSAR, UAV, GNSS, etc.) and geotechnical instrumentation (extensometers, inclinometers, tiltmeters, piezometers, etc.) techniques. Regarding monitoring sensitivity, frequency, and coverage, most of these methods have some shortcomings, which make it difficult to perform the accurate, real-time, and comprehensive monitoring of linear infrastructures. Distributed acoustic sensing (DAS) is an emerging sensing technology that has rapidly developed in recent years. Due to its unique advantages in long-distance, high-density, and real-time monitoring, DAS arrays have shown broad application prospects in many fields, such as oil and gas exploration, seismic observation, and subsurface imaging. In the field of linear infrastructure monitoring, DAS has gradually attracted the attention of researchers and practitioners. In this paper, recent research and the development activities of applying DAS to monitor different types of linear infrastructures are critically reviewed. The sensing principles are briefly introduced, as well as the main features. This is followed by a summary of recent case studies and some critical problems associated with the implementation of DAS monitoring systems in the field. Finally, the challenges and future trends of this research area are presented.

Details

Title
Distributed Acoustic Sensing for Monitoring Linear Infrastructures: Current Status and Trends
Author
Hong-Hu, Zhu 1   VIAFID ORCID Logo  ; Liu, Wei 2 ; Wang, Tao 2 ; Jing-Wen, Su 3 ; Shi, Bin 2 

 School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; Nanjing University High-Tech Institute at Suzhou, Suzhou 215123, China 
 School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China 
 Nanjing Center, China Geological Survey, Nanjing 210016, China 
First page
7550
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724312660
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.