It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To solve the problem of hiding quantum information in simplified subsystems, Modi et al. [1] introduced the concept of quantum masking. Quantum masking is the encoding of quantum information by composite quantum states in such a way that the quantum information is hidden to the subsystem and spreads to the correlation of the composite systems. The concept of quantum masking was developed along with a new quantum impossibility theorem, the quantum no-masking theorem. The question of whether a quantum state can be masked has been studied by many people from the perspective of the types of quantum states, the number of masking participants, and error correction codes. Others have studied the relationships between maskable quantum states, the deterministic and probabilistic masking of quantum states, and the problem of probabilistic masking. Quantum masking techniques have been shown to outperform previous strategies in quantum bit commitment, quantum multi-party secret sharing, and so on.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





