Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, a sensitive method for detecting DNA methyltransferase (MTase) activity was developed by combining the effective fluorescence resonance energy transfer (FRET) of cationic conjugated polymers and exonuclease (Exo) III–mediated signal amplification. DNA adenine MTase targets the GATC sequence within a substrate and converts the adenine in this sequence into N6-methyladenine. In the method developed in this study, the methylated substrate is cleaved using Dpn I, whereby a single-stranded oligodeoxynucleotide (oligo) is released. Afterward, the oligo is hybridized to the 3ʹ protruding end of the F-DNA probe to form a double-stranded DNA, which is then digested by Exo III. Subsequently, due to weak electrostatic interactions, only a weak FRET signal is observed. The introduction of the Exo-III–mediated target-recycling reaction improved the sensitivity for detecting MTase. This detection method was found to be sensitive for MTase detection, with the lowest detection limit of 0.045 U/mL, and was also suitable for MTase-inhibitor screening, whereby such inhibitors can be identified for disease treatment.

Details

Title
Detection of DNA Methyltransferase Activity via Fluorescence Resonance Energy Transfer and Exonuclease-Mediated Target Recycling
Author
Hu, Tingting 1 ; Ma, Changbei 1 ; Yan, Ying 1 ; Chen, Junxiang 2 

 School of Life Sciences, Central South University, Changsha 410013, China; [email protected] (T.H.); [email protected] (C.M.); [email protected] (Y.Y.) 
 Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China 
First page
395
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679658523
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.