Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a comparison between different types of propellers operated in calm water to evaluate their performance behind hulls and in open-water conditions. A bulk carrier is chosen as a case study to perform the simulation and to evaluate the performance of several propeller series, namely the Wagengein B-series, Kaplan 19A, and MAU. Firstly, optimization procedures are performed by coupling a propeller design tool and a nonlinear optimizer to find the optimum design parameters of a fixed-pitch propeller. This optimization model aims to design the propeller behind the hull at the engine operating point with minimum fuel consumption and maximum propeller efficiency. The two main objectives of this study and the constraints are defined in a single fitness function to find the optimum values of the propeller geometry and the gearbox ratio. By considering the benefits of the single-objective over the multi-objective optimization problem, this model helps to find the optimum propeller for both defined objectives instead of only considering one of them, as in previous studies. Then, based on the optimized parameters, the propeller performance is calculated in open-water conditions. From the computed results, one can observe the importance of considering the hull–propulsor interaction in propeller selection.

Details

Title
Design of Propeller Series Optimizing Fuel Consumption and Propeller Efficiency
Author
Tadros, Mina 1   VIAFID ORCID Logo  ; Ventura, Manuel 2 ; Carlos Guedes Soares 2   VIAFID ORCID Logo 

 Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; [email protected] (M.V.); [email protected] (C.G.S.); Department of Naval Architecture and Marine Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt 
 Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; [email protected] (M.V.); [email protected] (C.G.S.) 
First page
1226
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602104611
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.